

(3 Hours)

- N.B. (1) Question no. 1 is compulsory.
 - (2) Attempt any three questions out of remaining five questions.
 - (3) Illustrate your answer with necessary sketch wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data wherever necessary.

1. Attempt any FOUR of the following:

(20)

- (a) Write in brief about mechanism of orthogonal metal cutting.
- (b) Write short note on cutting tool materials
- (c) Write short note on cutting fluids
- (d) Explain crater wear and flank wear.
- (e) Draw merchant circle diagram and forces with usual notations and assumptions of merchant's theory
- 2. (a) A pipe 38mm in diameter is being turned on a lathe with a tool having rake angle of 330 and a feed of 0.15mm/rev. The length of chip over one revolution of workpiece is 72mm. The cutting speed is 12.5m/mim. the tangential force is 410N and the feed force is 170 N. Calculate (a) coefficient of friction on the rake force; (b) thickness of chip; (c) angle of shear; (d)velocity of shear (e) velcity of chip along the tool face
 - (b) Explain about the sources of heat in metal cutting.

(6)

(c) Write in brief about the measurement of cutting temperature.

- (4)
- 3. (a) During maching of low carbon steel with HSS cutting tool, the following (10) observations were made:,

cutting speed, m/mins	40	50
Tool life, minutes	40	10

Derive the v-t relationship

(b) Write short note on metal cutting chips

(6)

(c) Write short note on: Cubic Boron Nitride (CBN)

(4)

- 4. (a) Derive an expression for optimum cutting speed at minimum cost criteria by using (10) usual notations
 - (b) Design procedure for single point cutting tool shanks

(6)

(c) Write tool signature for single point cutting tool (ASA)

(4)

- 5. (a) Derive merchant's modified theory with usual notations
 - (b) Explain design procedure of cicular form tool with neat sketche of graphical method (10)

(10)

- 6. (a) Explain the following (Any four) (10)
 - 1. Diffentiate orthogonal and oblique cutting
 - 2. Draw twisted drill and show the techinical parts
 - 3. Machinability
 - 4. MRS and ORS
 - 5. Dynamometer
 - 6. Surface rougness based on tool geomentry